Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 17(9): e0011640, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37729234

RESUMEN

The blood-sucking hemipteran Rhodnius prolixus is one of the main vectors of Chagas disease, a neglected tropical disease that affects several million people worldwide. Consuming a blood meal and mating are events with a high epidemiological impact since after each meal, mated females can lay fertile eggs that result in hundreds of offspring. Thus, a better knowledge of the control of R. prolixus reproductive capacity may provide targets for developing novel strategies to control vector populations, thereby reducing vector-host contacts and disease transmission. Here, we have used a combination of gene transcript expression analysis, biochemical assays, hormone measurements and studies of locomotory activity to investigate how mating influences egg development and egg laying rates in R. prolixus females. The results demonstrate that a blood meal increases egg production capacity and leads to earlier egg laying in mated females compared to virgins. Virgin females, however, have increased survival rate over mated females. Circulating juvenile hormone (JH) and ecdysteroid titers are increased in mated females, a process mainly driven through an upregulation of the transcripts for their biosynthetic enzymes in the corpus allatum and ovaries, respectively. Mated females display weaker locomotory activity compared to virgin females, mainly during the photophase. In essence, this study shows how reproductive output and behaviour are profoundly influenced by mating, highlighting molecular, biochemical, endocrine and behavioral features differentially expressed in mated and virgin R. prolixus females.


Asunto(s)
Enfermedad de Chagas , Parásitos , Rhodnius , Animales , Femenino , Humanos , Rhodnius/fisiología , Reproducción , Oviposición/fisiología
2.
Gen Comp Endocrinol ; 340: 114304, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127083

RESUMEN

A pair of Y-organs (YOs) synthesize ecdysteroids that initiate and coordinate molting processes in decapod crustaceans. The YO converts cholesterol to secreted products through a biosynthetic pathway involving a Rieske oxygenase encoded by Neverland (Nvd) and cytochrome P450 monooxygenases encoded by Halloween genes Spook (Spo; Cyp307a1), Phantom (Phm; Cyp306a1), Disembodied (Dib; Cyp302a1), and Shadow (Sad; Cyp315a1). NAD kinase (NADK) and 5-aminolevulinic acid synthase (ALAS) support ecdysteroid synthesis in insects. A 20-hydroxylase, encoded by Shed in decapods and Shade in insects, converts ecdysone to the active hormone 20-hydroxyecdysone (20E). 20E is inactivated by cytochrome P450 26-hydroxylase (Cyp18a1). Contigs encoding these eight proteins were extracted from a Gecarcinus lateralis YO transcriptome and their expression was quantified by quantitative polymerase chain reaction. mRNA levels of Gl-Spo and Gl-Phm were four orders of magnitude higher in YO than those in nine other tissues, while mRNA levels of Gl-NADK and Gl-ALAS were similar in all ten tissues. In G. lateralis induced to molt by multiple leg autotomy, YO mRNA levels of Gl-Nvd, Gl-Spo, Gl-Phm, Gl-NADK, and Gl-ALAS were highest in intermolt and premolt stages and lower in postmolt. Gl-Dib mRNA level was not affected by molt stage. mRNA level of Gl-Sad, which converts 2-deoxyecdysone to ecdysone, was higher in mid- and late premolt stages, when YO ecdysteroidogenic capacity is greatest. Gl-Cyp18a1 mRNA level was highest in intermolt, decreased in premolt stages, and was lowest in postmolt. In animals induced to molt by eyestalk ablation, YO mRNA levels of all eight genes were not correlated with increased hemolymph 20E titers. These results suggest that YO ecdysteroidogenic genes are differentially regulated at transcriptional and translational levels.


Asunto(s)
Braquiuros , Animales , Braquiuros/genética , Braquiuros/metabolismo , Transducción de Señal/genética , Ecdisteroides/metabolismo , Muda/genética , Ecdisona , ARN Mensajero/metabolismo
3.
PLoS One ; 18(3): e0283286, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36940230

RESUMEN

Ecdysteroids control ovary growth and egg production through a complex gene hierarchy. In the female Rhodnius prolixus, a blood-gorging triatomine and the vector of Chagas disease, we have identified the ecdysone response genes in the ovary using transcriptomic data. We then quantified the expression of the ecdysone response gene transcripts (E75, E74, BR-C, HR3, HR4, and FTZ-F1) in several tissues, including the ovary, following a blood meal. These results confirm the presence of these transcripts in several tissues in R. prolixus and show that the ecdysone response genes in the ovary are mostly upregulated during the first three days post blood meal (PBM). Knockdown of E75, E74, or FTZ-F1 transcripts using RNA interference (RNAi) was used to understand the role of the ecdysone response genes in vitellogenesis and egg production. Knockdown significantly decreases the expression of the transcripts for the ecdysone receptor and Halloween genes in the fat body and the ovaries and reduces the titer of ecdysteroid in the hemolymph. Knockdown of each of these transcription factors typically alters the expression of the other transcription factors. Knockdown also significantly decreases the expression of vitellogenin transcripts, Vg1 and Vg2, in the fat body and ovaries and reduces the number of eggs produced and laid. Some of the laid eggs have an irregular shape and smaller volume, and their hatching rate is decreased. Knockdown also influences the expression of the chorion gene transcripts Rp30 and Rp45. The overall effect of knockdown is a decrease in number of eggs produced and a severe reduction in number of eggs laid and their hatching rate. Clearly, ecdysteroids and ecdysone response genes play a significant role in reproduction in R. prolixus.


Asunto(s)
Ecdisona , Rhodnius , Animales , Femenino , Ecdisteroides/metabolismo , Rhodnius/metabolismo , Ovario/metabolismo , Vitelogénesis/genética
4.
J Exp Biol ; 225(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36268612

RESUMEN

Rhodnius prolixus is a blood-gorging insect that is medically important since it transmits Chagas disease via feces and urine that contain the parasite Trypanosoma cruzi. In adult females, ecdysteroid hormone (20-hydroxyecdysone, 20E) is involved in the growth of the ovary and development of eggs post-blood meal (PBM). Halloween genes are essential for ecdysteroid synthesis since they code for cytochrome P450 enzymes in the ecdysteroidogenic pathway. The ecdysone receptor (EcR/USP) binds 20E, resulting in activation of ecdysone-responsive genes. We have identified and characterized the Halloween genes, and the non-Halloween gene, neverland, in the R. prolixus ovary using transcriptomic data. We used BLAST to compare transcriptome sequences with other arthropod sequences to identify similar transcripts. Our results indicate that the Halloween genes, neverland and ecdysone receptor transcripts are present in the ovaries of R. prolixus. We have quantified, by qPCR, Halloween gene transcript expression in the ovary following a blood meal. Most of the Halloween genes are upregulated during the first 3 days PBM. Knockdown of EcR, USP and shade transcripts, using RNA interference, results in a significant reduction in the number of eggs produced and a severe reduction in egg laying and hatching rate. Furthermore, knockdown of the EcR or shade transcripts altered the expression of the chorion gene transcripts Rp30 and Rp45 at day 3 and 6 PBM. These results indicate that ecdysteroids play critical roles in reproduction of female R. prolixus.


Asunto(s)
Enfermedad de Chagas , Rhodnius , Animales , Femenino , Ecdisteroides/metabolismo , Rhodnius/genética , Ovario , Enfermedad de Chagas/metabolismo , Oocitos/metabolismo
5.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36613451

RESUMEN

The rigorous balance of endocrine signals that control insect reproductive physiology is crucial for the success of egg production. Rhodnius prolixus, a blood-feeding insect and main vector of Chagas disease, has been used over the last century as a model to unravel aspects of insect metabolism and physiology. Our recent work has shown that nutrition, insulin signaling, and two main types of insect lipophilic hormones, juvenile hormone (JH) and ecdysteroids, are essential for successful reproduction in R. prolixus; however, the interplay behind these endocrine signals has not been established. We used a combination of hormone treatments, gene expression analyses, hormone measurements, and ex vivo experiments using the corpus allatum or the ovary, to investigate how the interaction of these endocrine signals might define the hormone environment for egg production. The results show that after a blood meal, circulating JH levels increase, a process mainly driven through insulin and allatoregulatory neuropeptides. In turn, JH feeds back to provide some control over its own biosynthesis by regulating the expression of critical biosynthetic enzymes in the corpus allatum. Interestingly, insulin also stimulates the synthesis and release of ecdysteroids from the ovary. This study highlights the complex network of endocrine signals that, together, coordinate a successful reproductive cycle.


Asunto(s)
Hormonas de Insectos , Rhodnius , Animales , Femenino , Hormonas Juveniles/metabolismo , Ecdisteroides/metabolismo , Rhodnius/metabolismo , Insulina/metabolismo , Hormonas de Insectos/metabolismo , Insulina Regular Humana
6.
Gen Comp Endocrinol ; 301: 113658, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33159911

RESUMEN

Molting in decapod crustaceans is controlled by ecdysteroid hormones synthesized and secreted by the molting gland, or Y-organ (YO). Halloween genes encode cytochrome P450 enzymes in the ecdysteroid synthetic pathway. The current paradigm is that YOs secrete an inactive precursor (e.g., ecdysone or E), which is hydroxylated at the #20 carbon to form an active hormone (20-hydroxyecdysone or 20E) by a mitochonrial 20-monooxygenase (CYP314A1) in peripheral tissues. 20-Monooxygenase is encoded by Shed in decapods and Shade in insects. We used eastern spiny lobster Shed sequences to extract six orthologs in the G. lateralis YO transcriptome. Phylogenetic analysis of the deduced amino acid sequences from six decapod species organized the Sheds into seven classes (Sheds 1-7), resulting in the assignment of the G. lateralis Sheds to Gl-Shed1, 2, 4A, 4B, 5A, and 5B. The mRNA levels of the six Gl-Sheds in the YO of intermolt animals were comparable to those in nine other tissues that included hepatopancreas and muscle. qPCR was used to compare the effects of molt induction by multiple leg autotomy (MLA) and eyestalk ablation (ESA) on Gl-Shed mRNA levels in the YO. Molt stage had little effect on Gl-Shed1 and Gl-Shed5B expression in the YO of MLA animals. Gl-Shed5A was expressed at the highest mRNA levels in the YO and was significantly increased during early and mid premolt stages. By contrast, ESA ± SB431542 had no effect on Gl-Shed expression at 1, 3, 5, and 7 days post-ESA. SB431542, which inhibits Transforming Growth Factor-ß/activin signaling and blocks YO commitment, decreased Gl-Shed2 and Gl-Shed4A mRNA levels at 14 days post-ESA. A targeted metabolomic analysis showed that YOs cultured in vitro secreted E and 20E to the medium. These data suggest that the YO expresses 20-monooygenases that can convert E to 20E, which may contribute to the increase in active hormone in the hemolymph during premolt.


Asunto(s)
Braquiuros , Animales , Hidrocarburo de Aril Hidroxilasas , Braquiuros/genética , Ecdisona , Ecdisteroides , Muda/genética , Filogenia , Esteroide Hidroxilasas
7.
J Exp Biol ; 221(Pt 21)2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30171095

RESUMEN

Mechanistic target of rapamymcin (mTOR) is a highly conserved protein kinase that controls cellular protein synthesis and energy homeostasis. We hypothesize that mTOR integrates intrinsic signals (moulting hormones) and extrinsic signals (thermal stress) to regulate moulting and growth in decapod crustaceans. The effects of temperature on survival, moulting and mRNA levels of mTOR signalling genes (Mm-Rheb, Mm-mTOR, Mm-AMPKα, Mm-S6K and Mm-AKT) and neuropeptides (Mm-CHH and Mm-MIH) were quantified in juvenile Metacarcinus magister Crabs at different moult stages (12, 19 or 26 days postmoult) were transferred from ambient temperature (∼15°C) to temperatures between 5 and 30°C for up to 14 days. Survival was 97-100% from 5 to 20°C, but none survived at 25 or 30°C. Moult stage progression accelerated from 5 to 15°C, but did not accelerate further at 20°C. In eyestalk ganglia, Mm-Rheb, Mm-AMPKα and Mm-AKT mRNA levels decreased with increasing temperatures. Mm-MIH and Mm-CHH mRNA levels were lowest in the eyestalk ganglia of mid-premoult animals at 20°C. In the Y-organ, Mm-Rheb mRNA levels decreased with increasing temperature and increased during premoult, and were positively correlated with haemolymph ecdysteroid titre. In the heart, moult stage had no effect on mTOR signalling gene mRNA levels; only Mm-Rheb, Mm-S6K and Mm-mTOR mRNA levels were higher in intermoult animals at 10°C. These data suggest that temperature compensation of neuropeptide and mTOR signalling gene expression in the eyestalk ganglia and Y-organ contributes to regulate moulting in the 10 to 20°C range. The limited warm compensation in the heart may contribute to mortality at temperatures above 20°C.


Asunto(s)
Proteínas de Artrópodos/genética , Braquiuros/fisiología , Frío , Regulación de la Expresión Génica/fisiología , Calor , Muda/fisiología , Animales , Proteínas de Artrópodos/metabolismo , Braquiuros/genética , Longevidad/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...